Classification of drug molecules for oxidative stress signalling pathway
Verma N, Singh H, Khanna D, Rana PS and Bhadada SK
In humans, oxidative stress is involved in the development of diabetes, cancer, hypertension, Alzheimers' disease, and heart failure. One of the mechanisms in the cellular defence against oxidative stress is the activation of the Nrf2-antioxidant response element (ARE) signalling pathway. Computation of activity, efficacy, and potency score of ARE signalling pathway and to propose a multi-level prediction scheme for the same is the main aim of the study as it contributes in a big amount to the improvement of oxidative stress in humans. Applying the process of knowledge discovery from data, required knowledge is gathered and then machine learning techniques are applied to propose a multi-level scheme. The validation of the proposed scheme is done using the K-fold cross-validation method and an accuracy of 90% is achieved for prediction of activity score for ARE molecules which determine their power to refine oxidative stress.
SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2
Burgener AV, Bantug GR, Meyer BJ, Higgins R, Ghosh A, Bignucolo O, Ma EH, Loeliger J, Unterstab G, Geigges M, Steiner R, Enamorado M, Ivanek R, Hunziker D, Schmidt A, Müller-Durovic B, Grählert J, Epple R, Dimeloe S, Lötscher J, Sauder U, Ebnöther M, Burger B, Heijnen I, Martínez-Cano S, Cantoni N, Brücker R, Kahlert CR, Sancho D, Jones RG, Navarini A, Recher M and Hess C
Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency.
Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1
Casares L, García V, Garrido-Rodríguez M, Millán E, Collado JA, García-Martín A, Peñarando J, Calzado MA, de la Vega L and Muñoz E
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that attracted a great attention for its therapeutic potential against different pathologies including skin diseases. However, although the efficacy in preclinical models and the clinical benefits of CBD in humans have been extensively demonstrated, the molecular mechanism(s) and targets responsible for these effects are as yet unknown. Herein we characterized at the molecular level the effects of CBD on primary human keratinocytes using a combination of RNA sequencing (RNA-Seq) and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS). Functional analysis revealed that CBD regulated pathways involved in keratinocyte differentiation, skin development and epidermal cell differentiation among other processes. In addition, CBD induced the expression of several NRF2 target genes, with heme oxygenase 1 (HMOX1) being the gene and the protein most upregulated by CBD. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrated that the induction of HMOX1 mediated by CBD, involved nuclear export and proteasomal degradation of the transcriptional repressor BACH1. Notably, we showed that the effect of BACH1 on HMOX1 expression in keratinocytes is independent of NRF2. In vivo studies showed that topical CBD increased the levels of HMOX1 and of the proliferation and wound-repair associated keratins 16 and 17 in the skin of mice. Altogether, our study identifies BACH1 as a molecular target for CBD in keratinocytes and sets the basis for the use of topical CBD for the treatment of different skin diseases including atopic dermatitis and keratin disorders.
Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma
Best SA, Ding S, Kersbergen A, Dong X, Song JY, Xie Y, Reljic B, Li K, Vince JE, Rathi V, Wright GM, Ritchie ME and Sutherland KD
The KRAS oncoprotein, a critical driver in 33% of lung adenocarcinoma (LUAD), has remained an elusive clinical target due to its perceived undruggable nature. The identification of dependencies borne through common co-occurring mutations are sought to more effectively target KRAS-mutant lung cancer. Approximately 20% of KRAS-mutant LUAD carry loss-of-function mutations in KEAP1, a negative regulator of the antioxidant response transcription factor NFE2L2/NRF2. We demonstrate that Keap1-deficient Kras lung tumors arise from a bronchiolar cell-of-origin, lacking pro-tumorigenic macrophages observed in tumors originating from alveolar cells. Keap1 loss activates the pentose phosphate pathway, inhibition of which, using 6-AN, abrogated tumor growth. These studies highlight alternative therapeutic approaches to specifically target this unique subset of KRAS-mutant LUAD cancers.
Neuroprotective effects of glucomoringin-isothiocyanate against HO-Induced cytotoxicity in neuroblastoma (SH-SY5Y) cells
Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, Noor NM and Abdull Razis AF
Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against HO-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
Semaphorin 6A Attenuates the Migration Capability of Lung Cancer Cells via the NRF2/HMOX1 Axis
Chen LH, Liao CY, Lai LC, Tsai MH and Chuang EY
Cell migration is a fundamental feature of cancer recurrence. Since recurrence is correlated with high mortality in lung cancer, it follows that reducing cell migration would decrease recurrence and increase survival rates. Semaphorin-6A (SEMA6A), a protein initially known as a regulator of axonal guidance, is down-regulated in lung cancer tissue, and low levels of SEMA6A are associated with cancer recurrence. Thus, we hypothesized that SEMA6A could suppress cancer cell migration. In this study, we found that the migration capability of H1299 lung cancer cells decreased with SEMA6A overexpression, while it increased with SEMA6A silencing. Moreover, silencing of the cellular homeostasis protein Heme-oxygenase-1 (HMOX1) and/or the transcription factor Nuclear Factor, Erythroid-2-Like-2 (NRF2) reversed the migration-suppressing effect of SEMA6A and the SEMA6A-driven alterations in expression of urokinase insulin-like-growth-factor-binding-protein-3, Matrix metalloproteinase (MMP)-1, and MMP9, the downstream effectors of HMOX1. Taken together, these results demonstrate that SEMA6A is a potential suppressor of cancer migration that functions through the NRF2/HMOX1 axis. Our results explain why low SEMA6A is linked to high recurrence in the clinical setting and suggest that SEMA6A could be useful as a biomarker or target in lung cancer therapy.
Radiosensitization of Head and Neck Squamous Cell Carcinoma (HNSCC) by a Podophyllotoxin
Resendez A, Tailor D, Graves E and Malhotra SV
Surgical resection and radiotherapy are an effective treatment in many head and neck squamous cell carcinomas (HNSCC), but in others, the development of radiotherapy resistance limits treatment efficacy and permits disease progression. We developed a novel multiwell radiation dosing method to increase the throughput of our investigation of the activity of a novel podophyllotoxin SU093 in acting as a radiosensitizer in the HNSCC models FaDu and SCC-25. These studies showed that combining SU093 with 5 Grays ionizing radiation acted synergistically to increase HNSCC apoptosis and decrease its proliferation via inhibition of Nuclear factor, erythroid 2 like 2 (Nrf2), a key effector of the DNA damage response induced by ionizing radiation. Combined treatment reduced migration in a simulated wounding model while also promoting cell cycle arrest at the G2/M phase. These findings validate the potential of SU093 as a synergistic radiosensitizing agent for use in combination with localized radiotherapy in treatment resistant HNSCC.
Oral Delivery of Nanoparticle Urolithin A Normalizes Cellular Stress and Improves Survival in Mouse Model of Cisplatin-induced AKI
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D and Kumar MNVR
The popular anti-cancer drug cisplatin causes many adverse side-effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses anti-oxidant properties, and has shown promise in mouse models of AKI. However, UA's therapeutic potential is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that utilize a surface conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a 7-fold enhancement in oral bioavailability compared to native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of Nrf2 and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, PARP1 levels, anti-apoptotic signaling, intracellular NAD, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increases the oral bioavailability of UA leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Nardosinanone N suppresses LPS-induced macrophage activation by modulating the Nrf2 pathway and mPGES-1
Lio CK, Luo JF, Shen XY, Dai Y, Machado J, Xie Y, Yao YD, Yu Y, Liu JX, Yao XS, Luo P and Zhou H
The side effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in the cardiovascular system mainly result from its inhibitory effect on cyclooxygenase-2 (COX-2). Since NSAIDs are one of the most commonly used anti-inflammatory drugs in the clinic, it is necessary to identify new anti-inflammatory drugs that are safer than NSAIDs. Nardosinanone N (NAN), a compound isolated from the roots and rhizomes of Nardostachys chinensis, was evaluated for its anti-inflammatory effects using the lipopolysaccharide (LPS)-stimulated RAW264.7 cell line and rat peritoneal macrophage models. First, we found that NAN down regulated the levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS) and prostaglandin E (PGE), but not cyclooxygenase-2 (COX-2). Additionally, NAN reduced the M1 macrophage phenotype and increased the M2 macrophage phenotype. Furthermore, mechanistic studies showed that NAN activated the nuclear factor-erythroid 2 -related factor 2 (Nrf2) signaling pathway, which, in turn, increased the expression of antioxidant protein heme oxygenase-1 (HO-1) to achieve its anti-inflammatory effect. Finally, Nrf2 siRNA and the HO-1 inhibitor significantly attenuated the anti-inflammatory effect of NAN. More interestingly, we found that NAN did not affect COX-2 expression and activity but reduced the PGE concentration by selective inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). In conclusion, NAN may be a new anti-inflammatory drug that has fewer side effects than NSAIDs and can be a new potential Nrf2 activator and mPGES-1 inhibitor.
Seaweed natural products modify the host inflammatory response via Nrf2 signaling and alter colon microbiota composition and gene expression
Bousquet MS, Ratnayake R, Pope JL, Chen QY, Zhu F, Chen S, Carney TJ, Gharaibeh RZ, Jobin C, Paul VJ and Luesch H
Seaweeds are an important component of human diets, especially in Asia and the Pacific islands, and have shown chemopreventive as well as anti-inflammatory properties. However, structural characterization and mechanistic insight of seaweed components responsible for their biological activities are lacking. We isolated cymopol and related natural products from the marine green alga Cymopolia barbata and demonstrated their function as activators of transcription factor Nrf2-mediated antioxidant response to increase the cellular antioxidant status. We probed the reactivity of the bioactivation product of cymopol, cymopol quinone, which was able to modify various cysteine residues of Nrf2's cytoplasmic repressor protein Keap1. The observed adducts are reflective of the polypharmacology at the level of natural product, due to multiple electrophilic centers, and at the amino acid level of the cysteine-rich target protein Keap1. The non-polar C. barbata extract and its major active component cymopol, reduced inflammatory gene transcription in vitro in macrophages and mouse embryonic fibroblasts in an Nrf2-dependent manner. Cymopol-containing extracts attenuated neutrophil migration in a zebrafish tail wound model. RNA-seq analysis of colonic tissues of mice exposed to non-polar extract or cymopol showed an antioxidant and anti-inflammatory response, with more pronounced effects exhibited by the extract. Cymopolia extract reduced DSS-induced colitis as measured by fecal lipocalin concentration. RNA-seq showed that mucosal-associated bacterial composition and transcriptional profile in large intestines were beneficially altered to varying degrees in mice treated with either the extract or cymopol. We conclude that seaweed-derived compounds, especially cymopol, alter Nrf2-mediated host and microbial gene expression, thereby providing polypharmacological effects.
Characterization by Empirical and Computational Methods of Dictyospiromide, an Intriguing Antioxidant Alkaloid from the Marine Alga
Yan P, Li G, Wang C, Wu J, Sun Z, Martin GE, Wang X, Reibarkh M, Saurí J and Gustafson KR
The challenging structural motif of dictyospiromide (), a spirosuccinimide alkaloid with antioxidant properties that are associated with activation of the Nrf2/ARE signaling pathway, was assigned using contemporary NMR experiments complemented with anisotropic NMR, chiroptical, and computational methodologies. Anisotropic NMR parameters provided critical orthogonal verification of the configuration of the difficult to assign spiro carbon and the other stereogenic centers in .
Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer
Gai C, Yu M, Li Z, Wang Y, Ding D, Zheng J, Lv S, Zhang W and Li W
Growing evidence confirms that ferroptosis plays an important role in tumor growth inhibition. However, some non-small-cell lung cancer (NSCLC) cell lines are less sensitive to erastin-induced ferroptotic cell death. Elucidating the mechanism of resistance of cancer cells to erastin-induced ferroptosis and increasing the sensitivity of cancer cells to erastin need to be addressed. In our experiment, erastin and acetaminophen (APAP) cotreatment inhibited NSCLC cell viability and promoted ferroptosis and apoptosis, accompanied with attenuation of glutathione and ectopic increases in lipid peroxides. Erastin and APAP promoted NSCLC cell death by regulating nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); and the ferroptosis induced by erastin and APAP was abrogated by bardoxolone methyl (BM) with less generation of reactive oxygen species and malondialdehyde. As a downstream gene of Nrf2, heme oxygenase-1 expression decreased significantly with the cotreatment of erastin and APAP, which could be rescued by BM. In vivo experiment showed that the combination of erastin and APAP had a synergic therapeutic effect on xenograft of lung cancer. In short, the present study develops a new effective treatment for NSCLC by synergizing erastin and APAP to induce ferroptosis.
RPB5-mediating protein promotes cholangiocarcinoma tumorigenesis and drug resistance by competing with NRF2 for KEAP1 binding
Wan ZH, Jiang TY, Shi YY, Pan YF, Lin YK, Ma YH, Yang C, Feng XF, Huang LF, Kong XN, Ding ZW, Tan YX, Dong LW and Wang HY
Cancer cell survival depends on the balance between reactive oxygen species production and scavenging, which is mainly regulated by NRF2 during tumorigenesis. Here, we demonstrated that deletion of RBP5-mediating protein (RMP) in an autonomous mouse model of intrahepatic cholangiocarcinoma (ICC) delays tumor progression. RMP-overexpressing tumor cells exhibited enhanced tolerance to oxidative stress and apoptosis. Mechanistically, RMP competes with NRF2 for binding to the Kelch domain of KEAP1 via the E**E motif, leading to decreased NRF2 degradation via ubiquitination, thus increasing NRF2 nuclear translocation and downstream transactivation of antioxidant genes. This RMP-KEAP1-NRF2 axis promotes ICC tumorigenesis, metastasis and drug resistance. Consistent with these findings, the RMP level in human ICC is positively correlated with the protein level of NRF2 and is associated with poor prognosis. CONCLUSION: These findings reveal that RMP is involved in the oxidative stress defense program and could be exploited for targeted cancer therapies.
Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development
Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S and Berindan-Neagoe I
Breast and prostate cancer are two of the most common malignancies worldwide. Both cancers can develop into hormone -dependent or -independent subtypes and are associated to environmental exposure in the context of an inherited predisposition. As and Cd have been linked to the onset of both cancers, with the exception of As, which lacks a definitive association with breast carcinogenesis. The two elements exert an opposite effect dependent on acute versus chronic exposure. High doses of As or Cd were shown to induce cell death in acute experimental exposure, while chronic exposure triggers cell proliferation and viability, which is no longer limited by telomere shortening and apoptosis. The chronically exposed cells also increase their invasion capacity and tumorigenic potential. At molecular level, malignant transformation is evidenced mainly by up-regulation of BCL-2, MMP-2, MMP-9, VIM, Snail, Twist, MT, MLH and down-regulation of Casp-3, PTEN, E-CAD, and BAX. The signaling pathways most commonly activated are KRAS, p53, TGF-β, TNF-α, WNT, NRF2 and AKT. This knowledge could potentially raise public awareness over the health risks faced by the human population living or working in a polluted environment and smokers. Human exposure to As and Cd should be minimize as much as possible. Healthcare policies targeting people belonging to these risk categories should include analysis of: DNA damage, oxidative stress, molecular alterations, and systemic level of heavy metals and of essential minerals. In this review, we present the literature regarding cellular and molecular alterations caused by exposure to As or Cd, focusing on the malignant transformation of normal epithelial cells after long-term intoxication with these two carcinogens.
Autophagy and Tumorigenesis in Drosophila
Khezri R and Rusten TE
The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.