Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies
Warren AM, Knudsen ST and Cooper ME
: Diabetic kidney disease (DKD) is a major cause of morbidity and mortality in diabetes and is the most common cause of proteinuric and non-proteinuric forms of end-stage renal disease (ESRD). Control of risk factors such as blood glucose and blood pressure is not always achievable or effective. Significant research efforts have attempted to understand the pathophysiology of DKD and develop new therapies. : We review DKD pathophysiology in the context of existing and emerging therapies that affect hemodynamic and metabolic pathways. Renin-angiotensin system (RAS) inhibition has become standard care. Recent evidence for renoprotective activity of SGLT2 inhibitors and GLP-1 agonists is an exciting step forward while endothelin receptor blockade shows promise. Multiple metabolic pathways of DKD have been evaluated with varying success; including mitochondrial function, reactive oxygen species, NADPH oxidase (NOX), transcription factors (NF-B and Nrf2), advanced glycation, protein kinase C (PKC), aldose reductase, JAK-STAT, autophagy, apoptosis-signaling kinase 1 (ASK1), fibrosis and epigenetics. : There have been major advances in the understanding and treatment of DKD. SGLT2i and GLP-1 agonists have demonstrated renoprotection, with novel therapies under evaluation. Addressing the interaction between hemodynamic and metabolic pathways may help achieve prevention, attenuation or even reversal of DKD.
The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases
Tu W, Wang H, Li S, Liu Q and Sha H
Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.
Contrast media (meglumine diatrizoate) aggravates renal inflammation, oxidative DNA damage and apoptosis in diabetic rats which is restored by sulforaphane through Nrf2/HO-1 reactivation
Khaleel SA, Raslan NA, Alzokaky AA, Ewees MG, Ashour AA, Abd Elhameid HE and Abd-Allah AR
Diabetes mellitus is an independent risk factor for renal impairment in patients exposed to contrast media. It doubles the risk and decreases survival rate of contrast induced nephropathy (CIN). Sulforaphane has antioxidant properties via Nrf2 activation. The interaction of diabetes and/or sulforaphane with contrast media on Nrf2 regulation is not yet understood. Herein, diabetes was induced by a single intra-peritoneal injection of streptozotocin. Animals were then divided into five groups; control non-diabetic group; diabetic group; diabetic/sulforaphane group; diabetic/CIN group; diabetic/CIN/sulforaphane group. Animals were assessed 24 h after CIN induction. Sulforaphane improved the impaired nephrotoxicity parameters, histopathological features, and oxidative stress markers induced by contrast media (meglumine diatrizoate) in diabetic rats. Immunofluorescence detection revealed increased Nrf2 expression in kidney sections after sulforaphane pretreatment. Moreover, gene expression of Nrf2 and HO-1 were up-regulated, while IL-6 and caspase3 were down-regulated in kidney tissues of animals pretreated with sulforaphane. In NRK-52E cells, sulforaphane pretreatment significantly ameliorated the cytotoxicity of meglumine diatrizoate. However, silencing Nrf2 using small interfering RNA (siRNA) abolished the cytoprotective effects of sulforaphane. Collectively, the results of this study suggest that Nrf2/HO-1 pathway has a protective role against CIN and support the clinical implication of Nrf2 activators, such as sulforaphane, in CIN particularly in diabetic patients.
Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO‑1 signaling
Zhang D and Li M
Puerarin is the major bioactive ingredient isolated from the dry root of Pueraria lobata, a plant used in traditional Chinese medicine. Puerarin has been used to treat diabetes and cataracts in China; however, its underlying mechanism of action remains unclear. The aim of the present study was to investigate the effectiveness and mechanism of puerarin in preventing cataracts in diabetic rats. Diabetes was induced by streptozocin (STZ) administration and rats were intraperitoneally injected with puerarin (25, 50 and 100 mg/kg). Blood glucose levels and cataract development were examined in the different experimental groups. In addition, the expression levels of markers associated with oxidative stress, including nuclear factor erythroid 2 like 2 (Nrf2) and heme oxygenase‑1 (HO‑1), were analyzed. The present results suggested that treatment with puerarin at 25, 50 and 100 mg/kg significantly reduced blood glucose levels and the incidence of cataract in STZ‑induced diabetic rats. Additionally, puerarin treatment reduced oxidative stress, restoring the levels of malondialdehyde and glutathione, and the activity of glutathione peroxidase. Furthermore, puerarin administration decreased the expression levels of retinal vascular endothelial growth factor and interleukin‑1β and increased the mRNA expression levels of Nrf2 and HO‑1, thus inhibiting oxidative stress. The present findings suggested that puerarin had hypoglycemic effects and that it prevented cataract development and progression in diabetic rats by reducing oxidative stress through the Nrf2/HO‑1 signaling pathway.
Type 2 diabetes induced oxidative brain injury involves altered cerebellar neuronal integrity and elemental distribution, and exacerbated Nrf2 expression: therapeutic potential of raffia palm (Raphia hookeri) wine
Erukainure OL, Ijomone OM, Sanni O, Aschner M and Islam MS
Neurodegenerative diseases, such as Alzheimer's disease have been recognized as one of the microvascular complications of type 2 diabetes (T2D). In this study, the effect of T2D on neuronal integrity and elemental distribution in the cerebellar cortex, as well as the therapeutic effect of Raffia Palm (Raphia hookeri) wine (RPW) were investigated in male albino rats. T2D was induced in 4 groups of rats using fructose and streptozotocin. One group served as negative control which was administered water, the second and third group were administered 150 and 300 mg/kg bodyweight of RPW, while the fourth was administered metformin (200 mg/kg bodyweight). Two other groups of normal rats were administered distilled water (control) and of RPW (300 mg/kg bodyweight). The rats were sacrificed after 5 weeks of treatment, and brains were collected. The cerebellum was removed, and several parts analyzed by immunochemistry, histology and scanning electron microscopy (SEM). Remaining brain tissues were used to analyze for the oxidative stress biomarkers and acetylcholinesterase activity. These analyses revealed oxidative damage with concomitantly increased acetylcholinesterase activity and upregulation of Nrf2 expression in the diabetic brain cerebellar cortexes. Histological and microscopic analysis also revealed altered distribution of neurons and axonal nodes with concomitant elevated levels of several heavy metals. Treatment with RPW significantly elevated glutathione (GSH) level, superoxide dismutase (SOD) and catalase activities, as well as depleted acetylcholinesterase and malondialdehyde (MDA) level and concomitantly inhibited Nrf2 expression. It also improved neuronal integrity and reduced the levels of heavy metals in brain. Taken together, the results of this study suggest that the RPW may afford a novel neuroprotective potential against diabetic neurodegeneration.
Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway
Guan Y, Zhou L, Zhang Y, Tian H, Li A and Han X
Diabetes mellitus-related cardiomyopathy (DMCMP) has been defined as ventricular dysfunction that occurs in diabetic patients independent of a recognized cause such as coronary artery disease or hypertension. Mechanisms underlying DMCMP have not been fully elucidated. In this study, the roles of protein phosphatase 2A/nuclear factor NF-E2-related factor 2 (PP2A/Nrf2) in experimental DMCMP induced by high glucose were studied in vitro and in vivo. The results showed that high glucose could induce experimental DMCMP and increase ROS generation, increase the expression and nuclear translocation of Nrf2, down-regulate the expression of PI3K/Akt/mTOR and up-regulate the expression of ERK, and activate the autophagy of cardiomyocytes. The activity or expression of PP2A in DMCMP increased. PP2A could up-regulate the expression of Nrf2 and promote cardiomyocytes autophagy and apoptosis. Inhibition of PP2A could reduce the expression of Nrf2 and inhibit the autophagy and apoptosis of cardiomyocytes. The results suggested that hyperglycemic-induced experimental DMCMP may be related to up-regulating the expression of Nrf2 through PP2A/Nrf2 pathway. These results will be helpful to elucidate the pathogenesis and mechanism of DMCMP and find targets for the development of new drugs to prevent or treat DMCMP.
2-Iodo-4'-Methoxychalcone Attenuates Methylglyoxal-Induced Neurotoxicity by Activation of GLP-1 Receptor and Enhancement of Neurotrophic Signal, Antioxidant Defense and Glyoxalase Pathway
Tseng YT, Tsai YH, Fülöp F, Chang FR and Lo YC
Methylglyoxal (MG) acts as a reactive precursor of advanced glycation end products (AGEs). This compound is often connected with pathologies such as diabetes, neurodegenerative processes and diseases of aging. 2-iodo-4'-methoxychalcone (CHA79), a synthetic halogen-containing chalcone derivative, has been reported its anti-diabetic activity. This study aims to investigate the potential protective capability of CHA79 against MG-mediated neurotoxicity in SH-SY5Y cells. Results indicated CHA79 increased viability of cells and attenuated the rate of apoptosis in MG-exposed SH-SY5Y. CHA79 up-regulated expression of anti-apoptotic protein (Bcl-2) and down-regulated apoptotic proteins (Bax, cytochrome , caspase-3, caspase-9). Moreover, CHA79 significantly up-regulated expression of neurotrophic factors, including glucagon-like peptide-1 receptor (GLP-1R), brain derived neurotrophic factor (BDNF), p75NTR, p-TrkB, p-Akt, p-GK-3β and p-CREB. CHA79 attenuated MG-induced ROS production and enhanced the antioxidant defense including nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, SOD and GSH. Furthermore, CHA79 attenuated MG-induced reduction of glyoxalase-1 (GLO-1), a vital enzyme on removing AGE precursors. In conclusion, CHA79 is the first novel synthetic chalcone possessing the GLP-1R and GLO-1 activating properties. CHA 79 also exhibits neuroprotective effects against MG toxicity by enhancing neurotrophic signal, antioxidant defense and anti-apoptosis pathway.
Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy
Li J, Hu X, Liang F, Liu J, Zhou H, Liu J, Wang H and Tang H
Moxibustion is the main alternative medicine treatment that has been beneficial to diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying protective mechanism of moxibustion against neuroinflammation remains unclear. We hypothesized that moxibustion treats DPN by regulating the balance of nuclear factor-2 erythroid-related factor-2 (Nrf2)-nuclear factor-kappa light chain enhancer of B cells (NF-кB). In vivo, diabetes was induced in rats by injecting streptozotocin (STZ; 60 mg/kg; i.p.). Moxibustion was then applied to "Zusanli" (ST 36), "Guanyuan" (BL 26), and "Yishu" (EX-B 3) acupuncture points. Nerve conduction was detected. Serum interleukin (IL)-1β, IL-6, and IL-8 levels were determined through enzyme-linked immunosorbent assay. NF-κB and Nrf2 proteins were examined through immunoblot analysis. The mRNA of NF-κB and Nrf2 was evaluated through RT-PCR. We found that the conduction velocity and amplitude of the action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by moxibustion treatment. Moxibustion also improved the effect of DPN on other parameters, including ultrastructural changes, NF-κB and Nrf2 expression in the sciatic nerve, and serum IL-1β, IL-6, and IL-8 levels. Our data suggested that moxibustion may alleviate neuroinflammation by inhibiting NF-κB and by activating Nrf2. Moxibustion may also provide therapeutic effects for patients with DPN by simultaneously targeting Nrf2 and NF-κB.
The antidiabetic properties of the hot water extract of kola nut (Cola nitida (Vent.) Schott & Endl.) in type 2 diabetic rats
Erukainure OL, Sanni O, Ijomone OM, Ibeji CU, Chukwuma CI and Islam MS
Cola nitida is amongst the evergreen plants native to West Africa used in the treatment of various ailments including diabetes.
A novel compound AB-38b improves diabetes-associated cognitive decline in mice via activation of Nrf2/ARE pathway
Chen YJ, Tang ZZ, Du L, Liu Y, Lu Q, Ma TF and Liu YW
Diabetes-associated cognitive decline (DACD) is increasingly being concerned, and oxidative stress plays a vital role in the pathological process. AB-38b is a novel synthetic compound with two specific active groups of biphenyl dicarboxylate and α, β unsaturated ketone, showing good antioxidant activity. The aim of this study was to investigate the ameliorative effects of AB-38b on DACD in mice, and to explore the possible mechanisms from glyoxylase 1 (Glo-1) enhancement and NF-E2-related factor-2 (Nrf2) activation.
Dietary Cocoa Prevents Aortic Remodeling and Vascular Oxidative Stress in Diabetic Rats
Álvarez-Cilleros D, López-Oliva ME, Morales-Cano D, Barreira B, Pérez-Vizcaíno F, Goya L, Ramos S and Martín MÁ
The aim of the present study is to investigate the potential protective effect of a cocoa-rich diet on functional and structural vascular alterations in diabetes and the mechanism involved.
[γ-aminobutyric acid fortified rice alleviated oxidative stress and pancreatic injury in type 2 diabetic mice]
Gao Q, Jiang Y, Luo T, Xu Y, Le G and Shi Y
To investigate the effects of gamma aminobutyric acid(GABA) fortified rice diet intervention on oxidative stress and pancreatic injury in type 2 diabetes mellitus(T2 DM) mice.
The Antidiabetic and Antinephritic Activities of (An Albino Mutant Strain) via Modulation of Oxidative Stress in the db/db Mice
Wang D, Jiang X, Teng S, Zhang Y, Liu Y, Li X and Li Y
This study first systematically analyzed the constituents of an albino mutant strain of (AU). After 8 weeks of continuous treatment with metformin (Met) (0.1 g/kg) and AU (0.1 and 0.4 g/kg), db/db mice showed hypoglycemic functioning, indicated by reduced bodyweight, food intake, plasma glucose, serum levels of glycated hemoglobin A1c and glucagon, hepatic levels of phosphoenolpyruvate carboxykinase and lucose-6-phosphatasem, and increased serum levels of insulin. The effect of hypolipidemic functions were indicated by suppressed levels of total cholesterol and triglyceride, and enhanced levels of hepatic glycogen and high-density lipoprotein cholesterol. The renal protective effect of AU was confirmed by the protection in renal structures and the regulation of potential indicators of nephropathy. The anti-oxidative and anti-inflammatory effects of AU were verified by a cytokine array combined with an enzyme-linked immunosorbent assay. AU decreased the expression of protein kinase C α and β2 and phosphor-nuclear factor-κB, and enhanced the expression of catalase, nuclear respiratory factor 2 (Nrf2), manganese superoxide dismutase 2, heme oxygenase-1 and-2, heat shock protein 27 (HSP27), HSP60, and HSP70 in the kidneys of db/db mice. The results confirmed that AU's anti-diabetic and anti-nephritic effects are related to its modulation on oxidative stress.
Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects
Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A and Yang C
Curcumin (a polyphenolic compound in turmeric) is famous for its potent anti-inflammatory, anti-oxidant, and anti-cancer properties, and has a great potential to act as an epigenetic modulator. The epigenetic regulatory roles of curcumin include the inhibition of DNA methyltransferases (DNMTs), regulation of histone modifications via the regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), regulation of microRNAs (miRNA), action as a DNA binding agent and interaction with transcription factors. These mechanisms are interconnected and play a vital role in tumor progression. The recent research has demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies such as cancers. Epigenetics helps to understand the mechanism of chemoprevention of cancer through different therapeutic agents. In this regard, dietary phytochemicals, such as curcumin, have emerged as a potential source to reverse epigenetic modifications and efficiently regulate the expression of genes and molecular targets that are involved in the promotion of tumorigenesis. The curcumin may also act as an epigenetic regulator in neurological disorders, inflammation, and diabetes. Moreover, curcumin can induce the modifications of histones (acetylation/deacetylation), which are among the most important epigenetic changes responsible for altered expression of genes leading to modulating the risks of cancers. Curcumin is an effective medicinal agent, as it regulates several important molecular signaling pathways that modulate survival, govern anti-oxidative properties like nuclear factor E2-related factor 2 (Nrf2) and inflammation pathways, e.g., nuclear factor kappa B (NF-κB). Curcumin is a potent proteasome inhibitor that increases p-53 level and induces apoptosis through caspase activation. Moreover, the disruption of 26S proteasome activity induced by curcumin through inhibiting DYRK2 in different cancerous cells resulting in the inhibition of cell proliferation opens up a new horizon for using curcumin as a potential preventive and treatment approach in proteasome-linked cancers. This review presents a brief summary of knowledge about the mechanism of epigenetic changes induced by curcumin and the potential effects of curcumin such as anti-oxidant activity, enhancement of wound healing, modulation of angiogenesis and its interaction with inflammatory cytokines. The development of curcumin as a clinical molecule for successful chemo-prevention and alternate therapeutic approach needs further mechanistic insights.
A novel polysaccharide from mycelia protects MIN6 cells against high glucose-induced damage via the MAPKs and Nrf2 pathways
Cao X, Liu D, Xia Y, Cai T, He Y and Liu J
Diabetes mellitus is one of the most widespread diseases in the world, high glucose can damage islet cells, it is important to discover new natural products to inhibit high glucose damage. The protective effects and mechanisms of a novel Lentinus edodes mycelia polysaccharide (LMP) against damage induced by high glucose in MIN6 cells were explored.