Higher urate in LRRK2 mutation carriers resistant to Parkinson's disease
Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, Zhang E, Chen X, Ascherio A and Schwarzschild MA
LRRK2 mutations, the most common genetic cause of Parkinson's disease (PD) display incomplete penetrance, indicating the importance of other genetic and environmental influences on disease pathogenesis in LRRK2 mutation carriers. The present study investigates whether urate, an antioxidant, Nrf2 activator, and inverse risk factor for idiopathic PD, is one such candidate biomarker of PD risk modulation in pathogenic LRRK2 mutation carriers.
Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation
Hernando S, Requejo C, Herran E, Ruiz-Ortega JA, Morera-Herreras T, Lafuente JV, Ugedo L, Gainza E, Pedraz JL, Igartua M and Hernandez RM
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely associated to beneficial effect over different neurodegenerative diseases. In the present study, we tested the potential therapeutic effect of docohexanoic acid (DHA) and its hydroxylated derivate, DHAH, in a partial lesion model of Parkinson's disease (PD). One month before and four months after the striatal lesion with 6-OHDA was made, the animals were daily treated with DHA (50 mg/kg), DHAH (50 mg/kg), vehicle or saline, by intragastric administration. Animal groups under n-3 PUFA treatments exhibited a trend to improve in amphetamine-induced rotations and cylinder test. The beneficial effect seen in behavioral studies were confirmed with TH immunostaining. TH fibers and TH neurons increased in the experimental groups treated with both n-3 PUFAs, DHA and DHAH. Moreover, the n-3 PUFAs administration decreased the astrogliosis and microgliosis, in both the striatum and substantia nigra (SN), with a higher decrease of GFAP and Iba-1 cells for the DHAH treated group. This experimental group also revealed a positive effect on Nrf2 pathway regulation, decreasing the positive Nrf2 immmunostaining in the striatum and SN, which revealed a potential antioxidant effect of this compound. Taking together, these data suggest a positive effect of n-3 PUFAs administration, and more concretely of DHAH, for PD treatment as it exhibited positive results on dopaminergic system, neuroinflammation and oxidative stress.
Ukgansan protects dopaminergic neurons from 6-hydroxydopamine neurotoxicity via activation of the nuclear factor (erythroid-derived 2)-like 2 factor signaling pathway
Eo H, Huh E, Sim Y and Oh MS
The sustenance of redox homeostasis in brain is the crucial factor to treat Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 factor (Nrf2)-mediated antioxidant response is well known for the main cellular endogenous defense mechanisms against oxidative stress. This study investigated for the first time the effects and possible mechanisms of action of Ukgansan on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in both in vitro and in vivo models of PD. We investigated the protective effect of Ukgansan against 6-OHDA with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. In addition, we demonstrated that Ukgansan significantly increased the expression of antioxidant response elements (ARE) and pro-survival protein as Bcl2 and suppressed the expression of pro-apoptotic factors, such as Bax, cytochrome c, and caspase-3 using immunoblotting. For the in vivo study, we used a mouse model of PD involving stereotaxic injection of 6-OHDA into the striatum (ST). Ukgansan alleviated motor dysfunctions induced by 6-OHDA followed by pole, open-field, and rotation tests. Dopaminergic neuronal loss and Nrf2 activation were evaluated by immunohistochemistry in the mouse ST and substantia nigra pars compacta (SNpc) regions. Ukgansan significantly protected dopaminergic neurons from 6-OHDA toxicity in mouse ST and SNpc by activating Nrf2. These results indicate that Ukgansan inhibited 6-OHDA-induced dopaminergic neuronal cell damage via activation of Nrf2 and its related factors in 6-OHDA-induced dopaminergic loss in vitro and in vivo. Thus, Ukgansan might delay the progression of PD via maintenance of redox homeostasis.
5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a novel Nrf2 activator targeting brain tissue, protects against MPTP-induced subacute Parkinson's disease in mice by inhibiting the NLRP3 inflammasome and protects PC12 cells against oxidative stress
Xu LL, Wu YF, Yan F, Li CC, Dai Z, You QD, Jiang ZY and Di B
Parkinson's disease (PD) is the second most common aging-related neurodegenerative disease worldwide. Oxidative stress and neuroinflammation are critical events in the degeneration of dopaminergic neurons in PD. In this study, we found that DDO-7263, a novel Nrf2-ARE activator reported by us, has ideal therapeutic effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease in mice. DDO-7263 improved the behavioral abnormalities induced by MPTP in mice, significantly attenuated chemically induced dopaminergic neuron loss of tyrosine hydroxylase (TH) in the substantia nigra (SN) and striatum of the mouse brain and inhibited the secretion of inflammatory factors. In addition, DDO-7263 protected PC12 neurons from HO-induced oxidative damage. The neuroprotective effects of DDO-7263 were confirmed both in vitro and in vivo models. Further studies showed that the neuroprotective effect of DDO-7263 was mediated by the activation of Nrf2-ARE signaling pathway and the inhibition of NLRP3 inflammasome activation. DDO-7263 induced NLRP3 inflammasome inhibition is dependent on Nrf2 activation. This conclusion was also verified in THP-1-derived macrophages (THP-Ms). DDO-7263 significantly inhibited NLRP3 activation, cleaved caspase-1 production and IL-1β protein expression in ATP-LPS-exposed THP-Ms cells. The pharmacokinetic parameters and tissue distribution results indicated that DDO-7263 has a brain tissue targeting function. All these lines of evidence show that DDO-7263 has ideal therapeutic effects on neurodegenerative diseases such as PD.
Nrf2/ARE Pathway as a Therapeutic Target for the Treatment of Parkinson Diseases
Gureev AP and Popov VN
Instead of the progress in the understanding of etiology of Parkinson's disease (PD), effective methods to prevent the progression of the disease have not been developed and only symptomatic treatment is currently possible. One of possible pathways to slow the progression of the disease is protection of dopaminergic neurons by maintaining mitochondrial quality control in neuron cells. Recent studies showed that the most promising target for pharmacological effects on mitochondria is the Nrf2/ARE signaling cascade. It participates in the maintenance of mitochondrial homeostasis, which is provided by an optimal ratio in the processes of mitochondrial biogenesis and mitophagy, as well as the optimal ratio of ROS production and ROS scavenging. Nrf2 activators are capable of modulating these processes, maintaining mitochondrial homeostasis in neurons. In addition, Nrf2 can synergistically interact with other transcription factors, for example, PGC-1a in the regulation of mitochondrial biogenesis and YY1 with the increase of antioxidant defense. All this makes Nrf2 an optimal target for drugs that could support the mitochondrial quality control, which, in combination with antioxidant protection, can significantly slow down the pathogenesis of PD. Some of these compounds have undergone laboratory studies and are at the stage of clinical trials now.
Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J and Labandeira-Garcia JL
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Andalucin from Artemisia lannta suppresses the neuroinflammation via the promotion of Nrf2-mediated HO-1 levels by blocking the p65-p300 interaction in LPS-activated BV2 microglia
Wang X, Gai YN, Li BB and Huang LL
Neuroinflammation plays an important role in many neurodegenerative conditions such as Alzheimer's disease (AD) and Parkinson disease (PD). Andalucin (ADL), a sesquiterpene lactone from Artemisia lannta, has been reported to exhibit NO inhibition in vitro. However, the effect of ADL on microglia-mediated neuroinflammation has not been investigated.
The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson's Disease
Zhao YF, Qiong-Zhang , Zhang JF, Lou ZY, Zu HB, Wang ZG, Zeng WC, Kai-Yao and Xiao BG
Aging is an inevitable physiological challenge occurring in organisms over time, and is also the most important risk factor of neurodegenerative diseases. In this study, we observed cellular and molecular changes of different age mice and LPS-induced Parkinson disease (PD) model. The results showed that behavioral performance and dopaminergic (DA) neurons were declined, accompanied by increased expression of pro-inflammatory factors (TLR2, p-NF-kB-p65, IL-1β and TNF-α), as well as pro-oxidative stress factor gp91phox in aged mice compared with young mice. Aging exaggerated inflammatory M1 microglia, and destroyed the balance between oxidation and anti-oxidation. The intranasal LPS instillation induced PD model in both young and aged mice. The poor behavioral performance and the loss of DA neurons as well as TLR2, p-NF-kB-p65, IL-1β, TNF-α, iNOS and gp91phox were further aggravated in LPS-aged mice. Interestingly, the expression of Nrf2 and HO-1 was up-regulated by LPS only in young LPS-PD mice, but not in aged mice. The results indicate that the synergy of aging process and LPS exposure may prominently aggravate the DA neurons loss caused by more serious neuroinflammation and oxidative stress in the brain.
Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes
Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Désaubry L, Kanthasamy A and Kanthasamy A
Astrocyte reactivity is disease- and stimulus-dependent, adopting either a proinflammatory A1 phenotype or a protective, anti-inflammatory A2 phenotype. Recently, we demonstrated, using cell culture, animal models and human brain samples, that dopaminergic neurons produce and secrete higher levels of the chemokine-like signaling protein Prokineticin-2 (PK2) as a compensatory protective response against neurotoxic stress. As astrocytes express a high level of PK2 receptors, herein, we systematically characterize the role of PK2 in astrocyte structural and functional properties. PK2 treatment greatly induced astrocyte migration, which was accompanied by a shift in mitochondrial energy metabolism, a reduction in proinflammatory factors, and an increase in the antioxidant genes Arginase-1 and Nrf2. Overexpression of PK2 in primary astrocytes or in the in vivo mouse brain induced the A2 astrocytic phenotype with upregulation of key protective genes and A2 reactivity markers including Arginase-1 and Nrf2, PTX3, SPHK1, and TM4SF1. A small-molecule PK2 agonist, IS20, not only mimicked the protective effect of PK2 in primary cultures, but also increased glutamate uptake by upregulating GLAST. Notably, IS20 blocked not only MPTP-induced reductions in the A2 phenotypic markers SPHK1 and SCL10a6 but also elevation of the of A1 marker GBP2. Collectively, our results reveal that PK2 regulates a novel neuron-astrocyte signaling mechanism by promoting an alternative A2 protective phenotype in astrocytes, which could be exploited for development of novel therapeutic strategies for PD and other related chronic neurodegenerative diseases. PK2 signals through its receptors on astrocytes and promotes directed chemotaxis. PK2-induced astrocyte reactivity leads to an increase in antioxidant and anti-inflammatory proteins while increasing glutamate uptake, along with decreased inflammatory factors. © 2018 Wiley Periodicals, Inc.
Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson's disease and inflammatory pathways
Elmazoglu Z, Yar Saglam AS, Sonmez C and Karasu C
Rotenone, an environmental toxin, triggers Parkinson's disease (PD)-like pathology through microglia-mediated neuronal death. The effects and molecular mechanisms of flavonoid luteolin against rotenone-induced toxicity was assessed in microglial BV2 cells. Cells were pretreated with luteolin (1-50 µM) for 12 h and then was co-treated with 20 µM of rotenone for an additional 12 h in the presence of luteolin. The viability (MTT), IL-1β and TNF-α levels and lactate dehydrogenase (LDH) release (ELISA), and Park2, Lrrk2, Pink1, Nrf2 and Trx1 mRNA levels (qRT-PCR) were measured. In rotenone exposed microglia, luteolin increased viability significantly at lower concentrations (1-5 µM) compared to higher concentrations (25-50 µM). Rotenone increased LDH release and IL-1β levels in a dose-dependent manner (1-20 µM). Luteolin inhibited rotenone-induced LDH release, however the activity decreased in concentration-dependent manner Neither rotenone nor luteolin altered TNF-α levels, but luteolin reduced IL-1β levels in a concentration dependent manner in rotenone exposed cells. The mRNA levels of Nrf2 and Trx1, which are the master regulators of redox state, were increased by rotenone, as well as by luteolin, which exhibited an inverse relationship between its concentration and effect (1-20 µM). Park2 mRNA levels increased by luteolin, but decreased by rotenone. Pink1 mRNA levels was not altered by rotenone or luteolin. Lrrk2 mRNA levels reduced by luteolin, while it was increased by rotenone. Results suggest that luteolin have favorable effects on regulation of oxidative stress response, genes associated with PD and inflammatory pathways, hence protects microglia against rotenone toxicity in a hormetic manner.
Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson's disease
Wang Y, Yu X, Zhang P, Ma Y, Wang L, Xu H and Sui D
Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons. To avoid inconvenience of frequent administration caused by short half life and recurrence of symptoms such as tremor and bradykinesia incurred by drug elimination, a novel long-acting pramipexole transdermal patch has been made. In the present study, we evaluated the neuroprotective effects and underlying mechanisms of pramipexole patch (PPX patch) in a subacute PD mouse model induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PPX patch treatment improved dyskinesia. MPTP-induced reduction of DA as well as its metabolites DOPAC and HVA in the striatum were prevented by PPX patch in a dose-dependent manner. PPX patch also restored the activity of antioxidant enzymes including SOD, GSH-Px and CAT in the striatum while reduced the content of MDA. Furthermore, PPX patch upregulated Nrf2/HO-1 expression. The protective effects of PPX patch was also associated with downregulation of the Bax/Bcl-2 ratio and Apaf-1, inhibition of cytochrome c release and inactivation of caspase-9 and caspase-3. In conclusion, our studies demonstrated that the long-acting pramipexole patch exerts its neuroprotective effects, at least in part, by inhibiting oxidative stress and mitochondrial apoptosis pathway and holds promise as a candidate drug.
Polydatin Prevents Lipopolysaccharide (LPS)-Induced Parkinson's Disease via Regulation of the AKT/GSK3β-Nrf2/NF-κB Signaling Axis
Huang B, Liu J, Meng T, Li Y, He D, Ran X, Chen G, Guo W, Kan X, Fu S, Wang W and Liu D
Parkinson's disease (PD) is a common neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra (SN). Neuroinflammation induced by over-activation of microglia leads to the death of dopaminergic neurons in the pathogenesis of PD. Therefore, downregulation of microglial activation may aid in the treatment of PD. Polydatin (PLD) has been reported to pass through the blood-brain barrier and protect against motor degeneration in the SN. However, the molecular mechanisms underlying the effects of PLD in the treatment of PD remain unclear. The present study aimed to determine whether PLD protects against dopaminergic neurodegeneration by inhibiting the activation of microglia in a rat model of lipopolysaccharide (LPS)-induced PD. Our findings indicated that PLD treatment protected dopaminergic neurons and ameliorated motor dysfunction by inhibiting microglial activation and the release of pro-inflammatory mediators. Furthermore, PLD treatment significantly increased levels of p-AKT, p-GSK-3β, and Nrf2, and suppressed the activation of NF-κB in the SN of rats with LPS-induced PD. To further explore the neuroprotective mechanism of PLD, we investigated the effect of PLD on activated microglial BV-2 cells. Our findings indicated that PLD inhibited the production of pro-inflammatory mediators and the activation of NF-κB pathways in LPS-induced BV-2 cells. Moreover, our results indicated that PLD enhanced levels of p-AKT, p-GSK-3β, and Nrf2 in BV-2 cells. After BV-2 cells were pretreated with MK2206 (an inhibitor of AKT), NP-12 (an inhibitor of GSK-3β), or Brusatol (BT; an inhibitor of Nrf2), treatment with PLD suppressed the activation of NF-κB signaling pathways and the release of pro-inflammatory mediators in activated BV-2 cells via activation of the AKT/GSK3β-Nrf2 signaling axis. Taken together, our results are the first to demonstrate that PLD prevents dopaminergic neurodegeneration due to microglial activation via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis.
Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway
Choi JH, Jang M, Lee JI, Chung WS and Cho IH
Kyung-Ok-Ko (KOK), a traditional multi-herbal medicine, has been widely used in Oriental medicine as a restorative that can enforce vitality of whole organs and as a medicine that can treat age-related symptoms including lack of vigor and weakened immunity. However, the beneficial effect of KOK on neurological diseases such as Parkinson's diseases (PD) is largely unknown. Thus, the objective of this study was to examine the protective effect of KOK on neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-treatment with KOK at 1 or 2 g/kg/day (p.o.) showed significant mitigating effects on neurological dysfunction (motor and welfare) based on pole, rotarod, and nest building tests. It also showed effects on survival rate. These positive effects of KOK were related to inhibition of loss of tyrosine hydroxylase-positive neurons, reduction of MitoSOX activity, increased apoptotic cells, microglia activation, and upregulation of inflammatory factors [interleukin (IL)-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide], and reduced blood-brain barrier (BBB) disruption in the substantia nigra pars compacta (SNpc) and/or striatum after MPTP intoxication. Interestingly, these effects of KOK against MPTP neurotoxicity were associated with inhibition of phosphorylation of mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways along with up-regulation of nuclear factor erythroid 2-related factor 2 pathways in SNpc and/or striatum. Collectively, our findings suggest that KOK might be able to mitigate neurotoxicity in MPTP-induced mouse model of PD via multi-effects, including anti-neuronal and anti-BBB disruption activities through its anti-inflammatory and anti-oxidative activities. Therefore, KOK might have potential for preventing and/or treating PD.
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders
Mesika R and Reichmann D
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Inhalation of hydrogen gas elevates urinary 8-hydroxy-2'-deoxyguanine in Parkinson's disease
Hirayama M, Ito M, Minato T, Yoritaka A, LeBaron TW and Ohno K
Hyposmia is one of the earliest and the most common symptoms in Parkinson's disease (PD). The benefits of hydrogen water on motor deficits have been reported in animal PD models and PD patients, but the effects of hydrogen gas on PD patients have not been studied. We evaluated the effect of inhalation of hydrogen gas on olfactory function, non-motor symptoms, activities of daily living, and urinary 8-hydroxy-2'-deoxyguanine (8-OHdG) levels by a randomized, double-blinded, placebo-controlled, crossover trial with an 8-week washout period in 20 patients with PD. Patients inhaled either ~1.2-1.4% hydrogen-air mixture or placebo for 10 minutes twice a day for 4 weeks. Inhalation of low dose hydrogen did not significantly influence the PD clinical parameters, but it did increase urinary 8-OHdG levels by 16%. This increase in 8-OHdG is markedly less than the over 300% increase in diabetes, and is more comparable to the increase after a bout of strenuous exercise. Although increased reactive oxygen species is often associated with toxicity and disease, they also play essential roles in mediating cytoprotective cellular adaptations in a process known as hormesis. Increases of oxidative stress by hydrogen have been previously reported, along with its ability to activate the Nrf2, NF-κB pathways, and heat shock responses. Although we did not observe any beneficial effect of hydrogen in our short trial, we propose that the increased 8-OHdG and other reported stress responses from hydrogen may indicate that its beneficial effects are partly or largely mediated by hormetic mechanisms. The study was approved by the ethics review committee of Nagoya University Graduate School of Medicine (approval number 2015-0295). The clinical trial was registered at the University Hospital Medical Information Network (identifier UMIN000019082).

Pin It on Pinterest

Share This
Malcare WordPress Security